Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37835953

RESUMO

Due to the rapid development of intelligent technology and the pursuit of green environmental protection, responsive materials with single response and actuation can no longer meet the requirements of modern technology for intelligence, diversification, and environmental friendliness. Therefore, intelligent responsive materials have received much attention. In recent years, with the development of new materials and technologies, cellulose materials have become increasingly used as responsive materials due to their advantages of sustainability and renewability. This review summarizes the relevant research on cellulose-based intelligent responsive materials in recent years. According to the stimuli responses, they are divided into temperature-, light-, electrical-, magnetic-, and humidity-responsive types. The response mechanism, application status, and development trend of cellulose-based intelligent responsive materials are summarized. Finally, the future perspectives on the preparation and applications of cellulose-based intelligent responsive materials are presented for future research directions.

2.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762468

RESUMO

Supercapacitors, with high energy density, rapid charge-discharge capabilities, and long cycling ability, have gained favor among many researchers. However, the universality of high-performance carbon-based electrodes is often constrained by their complex fabrication methods. In this study, the common industrial materials, zinc gluconate and ammonium chloride, are uniformly mixed and subjected to a one-step carbonization strategy to prepare three-dimensional hierarchical porous carbon materials with high specific surface area and suitable nitrogen doping. The results show that a specific capacitance of 221 F g-1 is achieved at a current density of 1 A g-1. The assembled symmetrical supercapacitor achieves a high energy density of 17 Wh kg-1, and after 50,000 cycles at a current density of 50 A g-1, it retains 82% of its initial capacitance. Moreover, the operating voltage window of the symmetrical device can be easily expanded to 2.5 V when using Et4NBF4 as the electrolyte, resulting in a maximum energy density of up to 153 Wh kg-1, and retaining 85.03% of the initial specific capacitance after 10,000 cycles. This method, using common industrial materials as raw materials, provides ideas for the simple preparation of high-performance carbon materials and also provides a promising method for the large-scale production of highly porous carbons.


Assuntos
Carbono , Gluconatos , Porosidade , Cloreto de Amônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...